YC1800 Low-Voltage General-Purpose Frequency Converter Flexible configuration with customization support to meet diverse customer requirements #### Product Name and Illustration YC1800-dark ## Product Introduction: Universal frequency converter, with superior performance, rich functions, and beautiful appearance; Excellent heat dissipation performance, smaller size, and more reasonable structural design; Flexible and versatile configuration, supporting customization to meet different customer needs. ## Technical Parameter: | Input Voltage | Single-phase power supply: 220V, 50Hz/60Hz
Three-phase power supply: 380V, 50Hz/60Hz | |----------------------------|---| | Rated voltage of motor | 0~2000V | | Motor rated power | 0.1 ~ 1000.0kW | | Rated current of motor | 0.1 ~ 6553.5A | | Motor stator resistance | 0.001~65.535Ω | | Motor rotor resistance | 0.001~65.535Ω | | Maximum
Frequency Range | 50.00Hz ~ 630.00Hz(Factory value 50.00Hz) | | Carrier Frequency | 1.0 ~ 15.0kHz | | No-load Cur | 0.1~6553.5A | For more detailed parameters, please refer to the "Function Parameter List" on page 9 of the "Product Manual" below. ## Application scope: - Metal processing, CNC machine tools, wire drawing machines and other mechanical equipment - Food machinery textile industry, etc - Boiler blower, induced draft fan, coal mine underground exhaust fan - Municipal engineering and energy-saving renovation of central air conditioning - For cyclone fans, centrifugal fans, etc - Circulating water pump, make-up water pump, oilfield water injection pump, oil transfer pump, music fountain Paper making equipment, chemical industry, pharmaceutical industry, # Contents Chanter 1 Safety Brecautions | Chapter 1 Safety Fredautions2 | |---------------------------------------| | 1.1 Safety Notices 2 | | Chapter 2 Product Information | | 2.1 Nomenclature Rules3 | | 2.2 Technical Specifications3 | | Chapter 3 Equipment Installation4 | | 3.1 Product Dimension Drawing4 | | 3.2 External Panel Dimension Diagram5 | | Chapter 4 Electrical Installation 6 | | 4.1 Electrical Terminal Description6 | | 4.2 Reference Wiring Diagram7 | | Chapter 5 Operation Interface8 | | 5.1 Exterior View8 | | 5.2 LED Indicator Description8 | | 5.3 Keypad Functions8 | | Chapter 6 Function Parameter Table | | Chapter 7 Troubleshooting37 | | 7.1 Fault Analysis and Resolution37 | ### Chapter 1 Safety precautions #### Safety Precautions: Users must carefully read this section before installing, commissioning, or maintaining the system. Strictly adhere to all safety instructions provided. The company shall not be liable for any injuries or damages resulting from non-compliance with these operational requirements. - 1.Do not use in flammable or explosive environments, as this may cause explosion hazards. - 2.Do not touch terminals while power is on, as electric shock may occur. - 3.Never connect the inverter output terminals (U, V, W) to the power supply to avoid equipment damage. - 4.Ensure proper wire gauge for external wiring to prevent loose connections, short circuits, or poor contacts. - 5.Do not directly short PB and P+ a braking resistor (200W or higher) must be connected here. - 6. Unauthorized disassembly or modification of the inverter is strictly prohibited and will void warranty and return eligibility. - 7.Do not perform wiring work while the inverter is powered on to avoid electrical hazards. - 8. Prevent foreign objects, especially conductive materials like metal, from entering the inverter. - 9.Avoid installing the inverter in areas with water splashing or excessive moisture to prevent internal damage. - 10.The grounding terminal must be securely connected to a proper earth ground for safety. - 11.Do not touch the heat sink or braking resistor during operation or within 10 minutes after power-off to prevent burns. - 12.Our company continuously improves products and updates features; specifications may change without prior notice. ## **Chapter II Product Information** #### 2.1 Naming rules #### Power input Adapter output capacity currenton motor Frequency converter model kW HD KVA Single phase power supply: 220V.50HZ/60HZ YC1800-S0.7GB 1.5 5.1 4.2 0.75 1 YC1800-S1.5GB 3.0 7.8 7.5 1.5 2 YC1800-S2.2GB 4.0 11.3 10.0 2.2 3 Three-phase power supply: 380V,50HZ/60HZ YC1800-T0.7GB 1.5 3.4 2.5 0.75 1 YC1800-T1.5GB 3.0 5.0 4.2 1.5 2 YC1800-T2.2GB 4.0 5.8 5.5 2.2 3 YC1800-T4.0GB 5.9 13.3 95 4.0 5 YC1800-T5.5GB 29 196 14 N 5.5 7.5 YC1800-T7.5GB 11.0 24.0 18.5 7.5 10 YC1800-T11GB 17.0 32.0 25.0 11.0 YC1800-T15GB 21.0 40 O 32.0 15.0 20 YC1800-T18.5GB 24.0 46 38.0 18.5 25 YC1800-T22GB 30.0 49.5 45.0 22 30 YC1800-T30GB 40.0 68.0 60.0 30 40 ## **Chapter 3 Installation Guide** ## 3.1 Product size diagram and installation diagram Table 3-1 YC1800 Series external dimensions and installation dimensions | Product
type
Number | (mr | position | | | dimensio | n (mm) | install
apertur
e | Net
quantit
y | remarks | |---------------------------|------|----------|-----|-------|----------|--------|-------------------------|---------------------|--------------| | Number | Α | В | н | H1 | w | D | (mm) | (Kg) | | | | | | | Singl | e phase | 220V | | | | | YC1800- | | | | | | | | | | | \$1.5GB | | | | | | | | | | | YC1800- | | | | | | | | | | | S2.2GB | | | | | | | | | | | | | | | Three | phase 3 | 80V | | | | | YC1800- | | | | | | | | | D (includes | | T0.7GB | 67.5 | 160 | 155 | 170 | 85 | 140 | ф5.0 | | knob height: | | YC1800- | | | | | | | | | 10mm) | | T1.5GB | | | | | | | | | | | YC1800- | | | | | | | | | | | T2.2GB | | | | | | | | | | #### 4.2 Refer to the wiring diagram #### Chapter V Operation Panel #### 5.1 Appearance diagram #### 5.2 Indicator light Description - 1) RUN: When the light is on, the frequency converter is running; When the light goes out, the frequency converter is in a shutdown state. - 2) F/R: Forward and reverse indicator light. When the light is on, it indicates that the machine is in reverse operation. - 3) L/R: Keyboard operation, terminal operation, and remote operation (communication control) indicator lights. - 4) ERR: Alarm indicator light - 5) Hz, A, V: Unit indicator lights, used to indicate the unit of the current displayed data, with the following units: Hz: Frequency Unit A: Current Unit V: Voltage Unit Hz+A: Speed Unit A+V:% Percentage ## 5.3 Key Description | key | Key Product
name | Key function | |--------------|---------------------------------|--| | PRG/ESC | Programming keys | Go to menu parameter Settings and switching functions | | MFK/JOG | Multi-function
selection key | Switch selection based on MFK function | | ▲ /UP | Incremental
key | Increment of data or Function code | | ▼/DOWN | The decrement key | Decrease in data or Function code | | SHIFT | shift key | Under the shutdown display interface and
operation display interface, display parameters can
be cyclically selected; When modifying parameters,
you can choose the modification bit of the
parameter | | DATA/ENTER | Confirm key | Gradually enter the menu screen, set parameters and confirm | | RUN | Run key | In keyboard operation mode, used for running operations | | STOP | break key | In the running state, this key can be used to stop
the operation; in the fault alarm state, it can be
used to reset the operation. | ## Chapter 6 List of functional parameters #### 6.1 Description of functional parameters "O"The set value of this parameter can be changed when the frequency converter is in both shutdown and operation states "•" The set value of this parameter cannot be changed when it is in operation in the frequency converter "%"The value of this parameter represents the actual detection record value and cannot be changed Table 6-1 A brief list of basic functional parameters | Function code | Product name | Description | Factory value | Attribute | |---------------|---------------------------------|---|---------------|-----------| | 00 basic pa | rameters | | | | | 00-00 | Frequency
converter type G/P | 0: G-type: constant torque
load
1: P-type: Fan pump type
load | 0 | • | | 00-01 | Motor control mode | O: retained 1: Vector control without speed sensor 2 (with torque control) 2: VF control | 2 | • | | 00-02 | Run command source selection | O: Keyboard command (L/R
lights off)
1: Terminal command (L/R
flashing)
2: Communication command
(L/R lights on) | 0 | • | | 00-03 | Frequency source A is selected | frequency 00-08, UP/DOWN Or the keyboard encoder can be modified, power down memory) 1: Al1 2: Al2 3: Al3 4: HDI 5: Simple PLC 6: Multi-speed 7: PID 8: RS-485 communication 9: Keyboard analog potentiometer | 0 | • | |-------|--|---|---|---| | 00-04 | Frequency source B selection | Ibid. (00-03) | 3 | • | | 00-05 | Frequency
source B is the
reference model
and the
selection is
made | 0: maximum frequency
1: Frequency source A | 0 | 0 | | 00-07 | Frequency source combination | 0: Frequency source A
1: Frequency source B | 0 | 0 | Digital Settings (preset | Function code | Product name | Description | Factory value | Attrib
ute | |---------------|---
---|-------------------------|---------------| | | | 2: Frequency source A + frequency source B 3: Frequency source A-frequency source B 4: The maximum value of the two MAX (A, B) 5: The minimum value of the two MIN (A, B) | | | | 00-08 | Set the keyboard
preset frequency | 0.00Hz ~ (00-08) | 50.00Hz | 0 | | 00-09 | Motor direction of operation | 0: Same direction 1: In the opposite direction 2: Do not flip | 0 | • | | 00-10 | maximun-frequency | 00-09 ~ 630.00Hz | 50.00Hz | • | | 00-12 | upper limiting
frequency | 00-10 ~ (00-08) | 50.00Hz | • | | 00-14 | Lower limit
frequency | 0.00Hz ~ (00-09) | 0.00Hz | • | | 00-15 | carrier frequency | 1.0 ~ 15.0kHz | The model is determined | 0 | | 00-16 | Zero frequency
output selection | 0: No output 1: There is output 2: DC braking output (from 05- 11 Set the size) | 0 | 0 | | 00-17 | Acceleration time 1 | 0.0 ~ 3600.0s | The model is determined | 0 | | 00-18 | Deceleration time 1 | 0.0 ~ 3600.0s | The model is determined | 0 | | 00-19 | Industry
application macro
selection | 0~65535 | 0 | 0 | | 01 Group n | notor parameters | | | | | 01-01 | Automatic
measurement of
motor parameters | 0: No function 1. Dynamic testing 2: Static test 1 3: Static Test 2 (recommended) | 0 | • | | 01-02 | Rated power of motor | 0.1 ~ 1000.0kW | Model
determination | • | | | | | | | | 01-03 | Rated frequency of motor | 0.01Hz~ maximum
frequency (00-08) | 50.00Hz | • | |-------------|---|---|------------------------|---| | 01-04 | Rated speed of motor | 1 ~ 36000rpm | Model
determination | • | | 01-05 | Rated voltage of motor | 0~2000V | Model
determination | • | | 01-06 | Rated current of motor | 0.1 ~ 6553.5A | Model
determination | • | | 01-07 | Motor stator resistance | 0.001~65.535 Ω | Model
determination | 0 | | 01-08 | Motor rotor resistance | 0.001~65.535 Ω | Model
determination | 0 | | 01-09 | Motor leakage
inductance
resistance | 0.1~6553.5mH | Model
determination | 0 | | 01-10 | Motor mutual
inductance
resistance | 0.1~6553.5mH | Model
determination | 0 | | 01-11 | Motor no-load
current | 0.1~6553.5A | Model
determination | 0 | | 02 Group VI | F control | | | | | 02-00 | VF curve setting | 0: Straight VF
1: multi-point VF (V1 <v<v3,< td=""><td>0</td><td>•</td></v<v3,<> | 0 | • | | | | F1 <f2<f3) 1.3="" 1.7="" 2.0="" 2:="" 3:="" 4:="" 5:="" 6:="" power="" reserved<="" separation="" td="" vf=""><td></td><td></td></f2<f3)> | | | | 02-01 | VF torque boost | 0.0%: Automatic torque boost 0.1~10.0%: manually set | 0.0% | 0 | | 02-02 | VF torque boost
cutoff frequency
position | 0.0 ~ 50.0% | 20.0% | 0 | | 02-03 | Multiple points VF
maximum
frequency F3 | 0.00Hz ~ (01-02) | 0.00Hz | | | 02-04 | Maximum voltage
of multi-point VF
is V3 | 0.0% ~ 110.0% | 0.0% | 0 | | 02-05 | Multiple points in the
VF intermediate | 0.00Hz ~ F3 | 0.00Hz | 0 | | | frequency F2 | | | | |-------|--|--|---------|---| | 02-06 | Multi point VF
intermediate
voltage V2 | 0.0% ~ V3 | 0.0% | 0 | | 02-07 | Multi point VF
minimum frequency F1 | 0.00Hz ~ F2 | 0.00Hz | 0 | | 02-08 | Multiple points VF minimum voltage V1 | 0.0% ~ V2 | 0.0% | 0 | | 02-09 | VF slip
compensation gain | 0.0 ~ 200.0% | 100.0% | 0 | | 02-10 | VF Low frequency
oscillation suppression
coefficient | 0~100 | 10 | 0 | | 02-11 | VF High frequency
oscillation
suppression
coefficient | 0~100 | 10 | 0 | | 02-12 | VF oscillation
suppression
frequency switching | 0.00Hz~ maximum frequency | 30.00Hz | 0 | | 02-13 | Automatic voltage regulation function AVR | 0: Cancel AVR
1: Full AVR
2: Keep | 1 | 0 | | 02-14 | Automatic power saving operation | No function Turn on automatic power saving operation | 0 | 0 | | 02-15 | VF constant power
weak magnetic
constant | 1.00~1.30 | 1.00 | 0 | | 02-16 | VF separated voltage source | 0: Digital Settings (02-17)
1: Al1 | 0 | 0 | | Function
code | Product name | Description | Factory value | Attribut
e | |------------------|---|---|---------------|---------------| | | | 2: AI2 3: AI3 4: HDI 5: Multi-speed 6: PID 7: RS-485 communication 8: Keyboard analog potentiometer | | | | 02-17 | VF Separation
voltage digital
setting | 0.0~100.0% | 0.0% | 0 | | 02-18 | VF separates
voltage
acceleration time | 0.0 ~ 3600.0s | 0.0s | 0 | | 02-19 | VF separates
voltage
deceleration
time | 0.0 ~ 3600.0s | 0.0s | 0 | | 02-20 | VF separates the upper voltage limit | (02-21)~100.0% | 100.0% | • | | 02-21 | VF is the lower limit of separation voltage | 0.0~ (02-20) | 0.0% | • | | 03 Group | motor vector control pa | rameters | | | | 03-00 | ASR proportional gain P1 | 0.0~200.0 | 20.0 | 0 | | 03-01 | ASR integration time I1 | 0.000 ~ 10.000s | 0.200s | 0 | | 03-02 | ASR ratio gain P2 | 0.0~200.0 | 20.0 | 0 | | 03-03 | ASR integration time I2 | 0.000 ~ 10.000s | 0.200s | 0 | | 03-04 | ASR switching
frequency 1 | 0.00Hz~ (03-22) | 5.00Hz | 0 | | 03-05 | ASR switching frequency 2 | (03-21) ~ maximum frequency | 10.00Hz | 0 | | 03-06 | ASR low-pass filter constant | 0~10 | 0 | 0 | | 03-07 | Electric slip
compensation
gain | 50~200% | 100% | 0 | | 03-08 | Brake slip
compensation
gain | 50~200% | 100% | 0 | |-----------|---|---|--------|---| | 03-09 | ACR, current loop KP | 0~65535 | 1000 | 0 | | 03-10 | ACR, current loop KI | 0~65535 | 1000 | 0 | | 03-11 | Vector 2
constant power
weak magnetic
constant | 0.1~2.0 | 0.3 | 0 | | 03-12 | Constant power
minimum weak
magnetic level | 10%~100% | 20% | 0 | | 03-13 | Weak magnetic proportional gain | 0~8000 | 1000 | 0 | | 03-14 | Upper limit of
vector output
voltage | 0.0~120.0% | 100.0% | 0 | | 03-15 | Motor pre-
excitation time | 0.000~10.000s | 0.300s | 0 | | 04 Torque | control parameters of t | he group | | | | | | 0: Speed control (invalid torque) | | | | 04-00 | Selection of torque
setting source | 1: Torque digital setting (04 -01) 2: The torque is set by Al1 3: The torque is set by Al2 4: The torque is set by Al3 5: The torque is set by HDI 6: Torque is set at multiple speeds 7: Torque RS-485 communication settings 8: Keyboard simulation potentiometer setting | 0 | 0 | | 04-01 | Torque time setting | -300.0~300.0% | 50.0% | 0 | | 04-02 | Torque filtering
time | 0.000~10.000s | 0.010s | 0 | | 04-03 | Positive torque
upper limit
frequency
source | 0: Torque upper limit
frequency digital setting
(04-05 and 04-06)
1: Al1
2: Al2
3: Al3
4: HDI
5: Multi-speed
6: RS-485 communication
7: Keyboard analog
potentiometer | 0 | 0 | |-------|---|---|---------|---| | 04-04 | Reverse torque
upper limit
frequency
source | ditto | 0 | 0 | | 04-05 | Positive torque
upper limit
frequency
Digital Settings | 0.00Hz ~ maximum
frequency | 50.00Hz | 0 | | 04-06 | Reverse torque upper
limit rate, digital
setting | 0.00Hz ~ maximum
frequency | 50.00Hz | 0 | | 04-07 | Selection of
methods for
limiting electric
torque | 0: Numerical setting of torque upper limit value (04-09 and 04 -10) 1:Al1 2:Al2 3:Al3 4:HDI 5: RS-485 communication 6: Keyboard analog potentiometer | | 0 | | 04-08 | Selection of
Braking Torque
Limitation Method | ditto | | 0 | | 04-09 Electric torque 0.0~300.0% | | |--|-----------------------------------| | limit digital setting | 180.0% o | | 04-10 Brake torque 0.0~300.0% limit is set digitally | 180.0% 0 | | 04-11 Vector low frequency torque compensation | 0.0% | | 04-12 Vector high frequency torque compensation | 0.0% | | 05 Start and stop control parameters | | | 0: Directly | start | | starting | e first before 0 • racking start | | 05-01 Start frequency 0.00~50.00H | ız 0.50Hz • | | 05-02 Start frequency holding time 00.0~50.0s | 0.0s | | 05-03 Start the DC braking current 0.0~100.0% | 0.0% | | 05-4 Start the DC braking time 0.00~50.009 | s 0.00s | | 05-05 Acceleration and deceleration mode | acceleration and | | 05-06 The acceleration time of the beginning of the S curve | 0.1s o | | 05-07 Deceleration time at the end of the S -curve 0.0~50.0s | 0.1s o | | 05-08 Shutdown mode 0: Slow do machine 1: Free shu | wn and stop the 0 o | | 05-09 | Starting
frequency of
shutdown DC
braking | 0.00∼ maximum frequency | 0.00Hz | 0 | |----------|--|---|-------------------------|---| | 05-10 | Shutdown DC
braking waiting
time | 0.00~50.00s | 0.00s | 0 | | 05-11 | Shutdown DC
braking waiting
time | 0.0~100.0% | 0.0% | 0 | | 05-12 | Shutdown DC
brake current | 0.00~50.00s | 0.00s | 0 | | 05-16 | Dead time of forward and
reverse rotation | 0.0~3600.0s | 0.00s | 0 | | 05-17 | Forward and reverse switching mode | Zero frequency switching Start frequency switching Stop speed switching | 0 | • | | 05-18 | Stop the speed | 0.00~100.00Hz | 0.50Hz | | | 05-19 | Stop speed
detection
method | O: Detection according to the speed setting value 1: Detection according to the speed feedback value | 1 | • | | 05-20 | Feedback speed
detection time | 0.00~100.00s | 0.05s | • | | 05-21 | Start delay | 0.0~60.0s | 0.0s | 0 | | 05-22 | Stop speed delay | 0.0~100.0s | 0.0s | 0 | | 05-23 | The braking unit acts | 0: Disabled 1: Enabled | 1 | 0 | | 05-24 | Action voltage of the braking unit | 200.0~2000.0V
(220V machine:
380V,380V machine:
700V) | The model is determined | 0 | | 05-25 | Excitation braking intensity | 0~150 0: Disabled Greater than 0: the greater the value, the better the braking effect | 0 | o | | 06 Group | input terminal parame | ters | | | | 06-00 | HDI input | 0: High-speed pulse input
1: Terminal switch input | 1 | | 1: Terminal switch input pattern | FC | Product name | Description | Factory value | Attrib
ute | |-------|-----------------------------------|--|---------------|---------------| | 06-01 | X1 terminal
function selection | O: No functionality 1: Forward running (FWD) 2: Reverse Run (REV) 3: Three line operation control 4: Forward Rotation Inching (FJOG) 6: Free parking 7: Fault reset 8: Operation paused 9: External fault input 10: Frequency setting increment (UP) 11: Reduce frequency setting (downward) 12: The frequency 12: The frequency | 1 | • | | 06-02 | X2 terminal function
selection | Increase/decrease setting has been cleared 13: Switch between setting A and setting B 14: Switching between combination setting and A setting I5: Switching between combination setting and B setting 16: Multi speed terminal 1 17: Multi speed terminal 3 19: Multi speed terminal 3 19: Multi speed terminal 3 19: Multi speed terminal 4 20: 3 19: Multi speed terminal 4 20: Multi speed terminal 4 20: Multi speed terminal 4 20: Multi speed terminal 3 19: Multi speed terminal 3 19: Multi speed terminal 4 20: Multi speed terminal 3 19: sp | 2 | • | | frequency (stop at the
current frequency)
27: Frequency Reset (Return
to Center Frequency)
28: Counter reset | | |--|--| | 29: Torque/speed control
switch
30: Do not accelerate or
decelerate
31: Counter triggered | | | 06-03 | X3 terminal function
selection | 32: Length reset 33: Frequency increase/decrease setting temporarily cleared 34: DC braking 35: Keep (switch motor 1 to motor 2) 36: Command to switch to keyboard command 37: Command to switch to terminal 38: Command to switch to communication command | 4 | • | |-------|------------------------------------|---|--------|---| | 06-04 | X4 terminal function selection | 39: Pre excitation command40: Zero electricityconsumption | 5 | • | | 06-09 | HDI terminal
function selection | 41: Electricity consumption remains unchanged | 16 | • | | 06-10 | Input terminal logic selection | Bit0~3: X1~X4, Bit8:
HDI
0 is positive logic, 1 is
negative logic; | 000 | 0 | | 06-11 | Input terminal filtering time | 0.000~1.000s | 0.010s | 0 | | 06-12 | Virtual terminal
Settings | 0x000~0x1FF
0: disable, 1: use
Bit0~bit3: X1~X4
Bit8: HDI | 0х000 | • | | 06-13 | Terminal command mode | 0: two-line 1 1: Two-line type 2 2: Three-line style 1 3: Three-line style 2 | 0 | • | |-------|---|---|--------|---| | 06-14 | X1 terminal opening delay | 0.00~50.000s | 0.000s | 0 | | 06-15 | X1 terminal
disconnection
delay | 0.00~50.000s | 0.000s | 0 | | 06-16 | X2 terminal opening delay | 0.00~50.000s | 0.000s | 0 | | 06-17 | X2 terminal
disconnection delay | 0.00~50.000s | 0.000s | 0 | | 06-18 | X3 terminal opening delay | 0.00~50.000s | 0.000s | 0 | | 06-19 | X3 terminal disconnection delay | 0.00~50.000s | 0.000s | 0 | | 06-20 | X4 terminal opening delay | 0.00~50.000s | 0.000s | 0 | | 06-21 | X4 terminal
disconnection delay | 0.00~50.000s | 0.000s | ٥ | | 06-30 | HDI terminal opening delay | 0.00~50.000s | 0.000s | 0 | | 06-31 | HDI terminal disconnection delay | 0.00~50.000s | 0.000s | 0 | | 06-33 | When power is applied, the terminal starts to protect the selection | 0: Protect 1: No protection | 0 | 0 | | 06-34 | UP/DOWN
terminal control
setting | Unit: UP/DOWN terminal enabled 0: Effective 1: Invalid 10: Select frequency source control 0: Only the digital settings of frequency sources A and B are valid 1: All frequency | 000 | 0 | | | | sources are valid 2: When multi speed priority is enabled, multi speed is invalid Hundred positions: Shutdown selection 0: Set as valid 1: Effective work, dismantled after shutdown 2: Effective operation, clear shutdown command | | | |-------|--|---|----------|---| | 06-35 | UP terminal
frequency
change rate | 0.01~50.00Hz/s | 0.50Hz/s | 0 | | 06-36 | DOWN terminal
frequency
change rate | 0.01~50.00Hz/s | 0.50Hz/s | 0 | | 06-18 | X3 terminal opening delay | 0.00~50.000s | 0.000s | 0 | | 06-19 | X3 terminal
disconnection delay | 0.00~50.000s | 0.000s | 0 | | 06-20 | X4 terminal opening delay | 0.00~50.000s | 0.000s | 0 | | 06-21 | X4 terminal
disconnection delay | 0.00~50.000s | 0.000s | 0 | | 06-30 | HDI terminal opening delay | 0.00~50.000s | 0.000s | 0 | | 06-31 | HDI terminal
disconnection
delay | 0.00~50.000s | 0.000s | 0 | | 06-33 | Protection selection
is started at the
terminal when
power is applied | 0: Protect 1: No protection | 0 | 0 | | 06-34 | UP/DOWN
terminal control
setting | Unit: UP/DOWN terminal enable 0: valid 1: Invalid 1: Invalid Ten: Frequency source control is selected 0: Only the digital setting of frequency sources A and B is valid 1: All frequency sources are valid 2: When multi-speed | 000 | 0 | | | | priority is enabled, multi-
speed is invalid
Hundreds: Shutdownoptions
0: Set effective
1: It works effectively and
is removed after shutdown
2: The operation is
effective and the
shutdown instruction is
cleared | | | |-------|---|--|-----------|---| | 06-35 | UP terminal
frequency change
rate | 0.01~50.00Hz/s | 0.50Hz/s | 0 | | 06-36 | Down terminal
frequency
change rate | 0.01~50.00Hz/s | 0.50Hz/s | 0 | | 06-37 | HDI input lower
limit | 0.000kHz~ (06-35) | 0.000kHz | 0 | | 06-38 | Set the lower limit
of HDI | -100.0%~100.0% | 0.0% | 0 | | 06-39 | HDI input upper
limit | (06-33)~50.000kHz | 50.000kHz | 0 | | 06-40 | The upper limit of HDI corresponds to the setting | -100.0%~100.0% | 100.0% | 0 | | 06-41 | HDI filter time | 0.000s~10.000s | 0.100s | 0 | | 06-42 | AII, lower limit
value | 0.00V~ (06-44) | 0.00V
| 0 | | 06-43 | All lower limit
corresponding
setting | -100.0%~100.0% | 0.0% | 0 | | 06-44 | All, upper limit | (06-42)~10.00V | 10.00V | 0 | | 06-45 | All upper limit
corresponds to
the setting | -100.0%~100.0% | 100.0% | 0 | | 06-46 | All input filter
time | 0.000s~10.000s | 0.100s | 0 | | 06-47 | AI2, lower limit
value | 0.00V~ (06-39) | 0.00V | 0 | | 06-48 | AI2 lower limit
corresponding
setting | -100.0~100.0% | 0.0% | 0 | | 06-49 | AI2, upper limit | (06-47)~10.00V | 10.00V | 0 | |------------|--|--|--------|---| | 06-50 | AI2 upper limit
corresponding
setting | -100.0~100.0% | 100.0% | 0 | | 06-51 | AI2 input filter
time | 0.000s~10.000s | 0.100s | 0 | | 06-52 | AI3, lower limit
value | -10.00V~ (06-54) | 0.00V | 0 | | 06-53 | AI3 lower limit
corresponds to the
setting | -100.0~100.0% | 0.0% | 0 | | 06-56 | AI3, upper limit | (06-54)~10.00V | 10.00V | 0 | | 06-57 | AI3 upper limit
corresponding
setting | -100.0~100.0% | 100.0% | 0 | | 06-58 | AI3 Input filter
time | 0.000s~10.000s | 0.100s | 0 | | 06-59 | AI input type
selection IV | Unit: AI1
Ten: AI2
0: AI terminal voltage input,
1: AI terminal current input | 10 | 0 | | 07 Group o | utput terminal paramet | ers | | | | 07-00 | HDO terminal output mode | 0: High-speed pulse output
1: Terminal switch output | 1 | • | | | Select terminal | 0: Invalid | | | | 07-01 | output function | 1: Running | 0 | 0 | | | Yl | 2: Running forward | | | | | | Reverse operation Moving point operation | | | | | | 5: Inverter fault | | | | | | 6: Frequency level | | | | | | detection FDT1 | | | | 07-02 | HDO terminal | 7: Frequency level | 0 | 0 | | 07-02 | output function
selection | detection FDT2 | U | 0 | | | | 8: Frequency arrival | | | | | | 9: zero speed operation | | | | | | 10: The upper frequency is | | | | | | reached | | | | 07-03 | K1 relay output
function
selection | 11: The lower frequency has been reached | 1 | 0 | |-------|--|--|---|---| | 07-04 | K2 relay output
function
selection | 12: Operation is ready 13: Pre-excitation 14: Overload alarm 15: Underload alarm 16: The simple PLC phase is completed 17: Simple PLC cycle is completed 18: Set the value of the count 19: The specified value has been reached 20: External fault 22: The running time has arrived 23: Communication virtual terminal output | 5 | 0 | | Fault
code | Product name | Description | Factory value | Attri
bute | |---------------|---|---|---------------|---------------| | 07-05 | AOI Output
function selection | 0: Operating frequency 1: Set the frequency 2: The slope is given frequency 3: Running speed 4: Output current (2 times rated value of frequency converter) 5: Output current (two times the rated value of motor) 6: Output voltage 7: Output power 8: Set the torque 9: Output torque | 4 | 0 | | 07-07 | HDO pulse
output function
selection | 10: Simulate the input value of A11 11: Simulate the input value of A12 12: Simulate the input value of A13 13: High-speed pulse HDI input value 14: Communication set value output 15: Retain 22: Torque current (3 times the rated value of motor) | 0 | 0 | | 07-08 | AO1 Output lower
limit | -100.0%~ (07-10) | 0.0% | | | 07-09 | AO1 Output lower
limit corresponds
to value | 0.00~10.00V | 0.00V | 0 | | 07-10 | AO1 Output upper
limit | (07-08)~100.0% | 100.0% | 0 | | 07-11 | AO1 output upper
limit corresponds
to value | 0.00~10.00V | 10.00V | 0 | | 07-12 | AO1 Output filter
time | 0.000s~10.000s | 0.000s | 0 | |---|---|--|----------|---| | 07-18 | HDO bottoming | -100.0%~ (07-20) | 0.0% | 0 | | 07-19 | Value
corresponding to
the lower limit of
HDO output | 0.00~50.00kHz | 0.00kHz | 0 | | 07-20 | HDO output upper
limit | (07-18)~100.0% | 100.0% | 0 | | 07-21 | The HDO output
upper limit
corresponds to the
value | 0.00~50.00kHz | 50.00kHz | 0 | | 07-22 | HDO output filter
time | $0.000 s{\sim} 10.000 s$ | 0.000s | 0 | | 07-23 | Y1 activation delay | 0.00~50.000s | 0.000s | 0 | | 07-24 | Y1 is disconnected | 0.00~50.000s | 0.000s | 0 | | 07-25 | for a delay
HDO activation
delay | 0.00~50.000s | 0.000s | 0 | | 07-26 | HDO disconnection delay | 0.00~50.000s | 0.000s | 0 | | 07-27 | Kl activation delay | 0.00~50.000s | 0.000s | 0 | | 07-28 | K1 disconnection
delay | 0.00~50.000s | 0.000s | 0 | | 07-29 | K2 opening delay | 0.00~50.000s | 0.000s | 0 | | 07-30 | K2 disconnection
delay | 0.00~50.000s | 0.000s | 0 | | 07-31 | Output terminal polarity selection | 0~F (Bit0~3: Y1, HDO,
K1, K2) | 0 | 0 | | 08 Group
keyboard
display
parameters | | | | | | 08-00User | password | | | | | 08-01 | MFK/JOG key
function selection | 0: No function 1: Jog the operation 2: Shift key (SHIFT) 3: Forward/reverse switch 4: Clear UP/DOWN Settings 5: Free parking 6: The command source is switched in sequence (08-02) | 1 | • | | | | | | Attribu
te | |-------|--|--|---|---------------| | 08-02 | MFK key run
command source
is switched | 0: keyboard control → terminal control → communication control 1: Keyboard control 2: Keyboard control ⇔ Communication control 3: Terminal control ← → Communication control | 0 | 0 | | 08-03 | Stop/reset key
function | 0: Only the panel control is valid 1: The control of the opposite panel and terminal is valid at the same time 2: The opposite panel and communication control are valid at the same time 3: Effective for all control modes | 0 | 0 | | 08-04 | Restore factory
parameters | 0: No operation
1. Restore the default value | 0 | • | | Fault
code | | | | | |---------------|--|--|------|---| | | | 2: Clear the fault record
3: The keyboard is locked | | | | 08-05 | Keyboard digital control setting | Unit: Frequency enable selection 0: Both the AND/NOT key and the encoder are valid 1: Only the A/V keys are valid 2: Only the encoder 3: The AND/OR key and encoder are invalid Ten: Frequency control selection 0: Only the keyboard number setting is valid 1: All frequency modes are valid 2: Multi-speed priority is invalid for multi-speed 100: Action selection when the machine is stopped. 0: Set effective 1: Effective during operation and removed after shutdown 2: Effective during operation and cleared after receiving the shutdown command Thousand: AND/OR key and encoder integration function 0: The points function is valid 1: The points function is invalid | 0000 | 0 | | 08-06 | Keyboard encoder
and
UP/DOWN key
resolution,
adjustment
selection | 1-4 | 2 | 0 | | 08-07 | Frequency
setting power
off action
selection | 00~11 Unit: Action selection when the encoder adjustment frequency drops out of power Ten: Communication setting frequency power failure Time action selection 0: store when power failure occurs 1: reset when power failure occurs | 00 | o | |-------|---|---|----|---| | 08-08 | Function code
parameter copy | 0: No operation 1: Function parameters are uploaded to the keyboard 2: Download the keyboard function parameters to this machine (including motor parameters) 3: Keyboard function parameters are downloaded to the local machine (excluding motor parameters) 4: Download the keyboard function parameters to this machine (only motor parameters) | 0 | • | | 08-09 | LED operating
status display
parameter 1 | 0000-FFFF BIT0: Operating frequency (Hz on) BIT1: Setting frequency (Hz off) BIT2: bus voltage (V) BIT3: output voltage (V) BIT4: output voltage (V) BIT5: running speed
(rpm) BIT6: Output power (%) BIT7: Output torque (%) BIT8: PID set value (%) BIT9: PID feedback value (%) brightness BIT10: input terminal status BIT11: output terminal status BIT12: forque setting value (%) bright BIT13: Pulse count value BIT15: PLC and multi- speed current segment number | 033F | | |-------|--|---|------|---| | 08-10 | LED operating
status display
parameter 2 | 0000-FFFF BITO: Analog Al1 value (V on) BIT1: Analog Al2 value (V on) BIT2: Analog Al3 value (V bright) BIT3: HDI frequency of high-speed pulse BIT4: Motor overload percentage (%) BIT5: Percentage of inverter overload (%) BIT6: Ramp frequency set value (Hz bright) BIT7: linear velocity | 0000 | 0 | | Fault
code | | | | | |---------------|-------------------------------------|--|-------|---| | 08-11 | LED shutdown
display parameters | BITS: AC incoming line current BIT9: Upper frequency 0000-FFFF BIT0: Set the frequency (Hz for bright, slow flashing) BIT1: Bus voltage (V bright) BIT2: Input terminal status BIT3: Output terminal status BIT4: PID set value (%) flash BIT5: PID feedback value (%) brightness BIT6: Torque set value (%) bright) BIT7: Analog AI1 value (V bright) BIT8: Analog AI2 value (V bright) BIT9: Analog AI3 value (V bright) BIT1: PLC and current number of multiple speed segments BIT1: Pulse count value BIT1: Length value BIT1: Length value | 038B | 0 | | 08-12 | software release | 0.00~655.35 | - | * | | 08-13 | Rectifier
temperature | 0~120.0°C | - | * | | 08-14 | Inverter
temperature | 0~120.0℃ | - | * | | 08-15 | Frequency display
coefficient | 0.01~10.00 | 1.00 | 0 | | 08-16 | Speed display coefficient | 0.1~999.9% | 97.3% | 0 | | 08-17 | Linear speed
display coefficient | 0.1~999.9% | 1.0% | 0 | | 08-18 | Input power
factor display
coefficient | 0.00~1.00 | 0.56 | | |----------|--|---|---------------|---------------| | 08-19 | Cumulative running time | 0~65535h | - | * | | 08-20 | Monitor high
cumulative
power
consumption | Total power
consumption = (08-
20) *1000 + (08- | 0kWh | * | | 08-21 | Monitor the
cumulative
power
consumption at
a low level | 21) | 0.0kWh | * | | 08-22 | Set high electricity consumption | The initial value of electricity consumption = (08- | 0kWh | 0 | | FC | Product name | Description | Factory value | Attri
bute | | | starter | 22)*1000+(08-23) | | | | 08-23 | Set the initial value
of electricity
consumption at a
low level | | 0.0kWh | 0 | | 08-24 | Barcodel | | | * | | 08-25 | Barcode2 | | | * | | 08-26 | Barcode3 | | | * | | 08-27 | Barcode4 | | | * | | 08-28 | Barcode5 | | | * | | 08-29 | Barcode6 | | | * | | 08-30 | Motor power
display correction
factor | 0.00~3.00 | 1.00 | 0 | | 09 Group | fault record parameters | | | | | 09-00 | Current fault code | Faul Product Faul Produc | | * | | 09-01 | Previous previous fault code | t name of t t name | | * | | 09-02 | Previous two
previous fault
codes | trouble-
o free 29 | | * | | 09-03 | Fault codes before
the third time | Inverter Overloa | | * | | 09-04 | The first four fault codes | 1 unit protectio 30 d causes | | * | | 09-05 | Top five fault codes | n failure | | * | | | | 2 Accelerat 31 PID | | | | 09-06 | Current fault
operation
frequency | | e the
overcurre
nt | | feedba
ck line | | * | |-------|---|----|--------------------------------|----|---|---|---| | | | 3 | Slow
down the | 40 | Fast
limit,
flow | | | | 09-07 | The current
fault slope
gives the | | nt | | fault | | * | | | frequency Current fault | 4 | Constant
speed
overcurre | 42 | The
speed
is too | | | | 09-08 | output voltage | | nt | | fast
and
the
differ
ence
is too
large | | * | | | | 5 | Accelerat
e | 48 | Electr
onic | | | | 09-09 | Current fault
output current | | overvolta
ge | | overlo
ad
fault | | * | | | | 6 | Slow
down | 51 | Initial
positi | | | | 09-10 | Current fault
bus voltage | | overvolta
ge | | on,
set
out of
balanc
e | | * | | | | 7 | Constant
speed | 60 | Brake
tube | | | | 09-11 | Current fault
module
temperature | 8 | overvolta
ge | | protec
tion | | * | | | Current fault | | | | | | | | 09-12 | input end
substate | 9 | Busbar
under
voltage | | | | * | | | Current fault | 10 | Frequenc
y
converter | | | | | | 09-13 | output end
substate | 11 | overload
Motor
overload | | | _ | * | | 09-14 | Frequency of previous failed operation | 12 | Enter a
missing
phase | | | - | * | | | | 13 | Output is
out of
phase | | | | | | | The previous | | Pilase | | | | | | fault slope is
given by the
frequency | 14 | IGBT
superhe
at | | | | | | |---|----|-----------------------|--|--|--|--|--| |---|----|-----------------------|--|--|--|--|--| | Fault
code | Product name | 33
Description | Factory value | Attribu
te | |---------------|---|---|---------------|---------------| | 09-16 | Output voltage of
the previous fault | 15 External fault | | * | | 09-17 | Output current of
the previous fault | 16 Communi cation failure 17 18 Current detection | | * | | 09-18 | Voltage of the
previous faulty
busbar | fault 19 Motor tuning | | * | | 09-19 | Previous fault
module
temperature | fault | | * | | 09-20 | The previous
fault input
terminal status | 21 EEPROM
failure | | * | | 09-21 | The previous fault output terminal status | 23 Ground
short
circuit | | * | | 09-22 | Frequency of
previous two
faulty
operations | fault 26 Runtime Arrive | | * | | 09-23 | The previous
two fault slopes
are given at a
constant
frequency | | | * | | 09-24 | Output voltage of
the first two faults | | | * | | 09-25 | Output current for
the first two faults | | | * | | 09-26 | Voltage of the previous faulty busbar | | | * | | 09-27 | Temperature of
the first two fault
modules | | | * | | 09-28 | The status of the
previous two fault
input terminals | | | * | | 09-29 | Status of the
output terminals
for the first two
faults | | | * | |------------|--|--|---|---| | 10 sets of | protection parameters | | | | | 10-00 | Motor overload
protection
selection | 0: No action 1: Ordinary motor 2: frequency conversion | 2 | • | | | | | | Attrib
ute | |-------|--|--|-------------------------|---------------| | 10-04 | Overcurrent protection selection | Unit: Overcurrent protection enabled 0 invalid, 1 valid Ten: Hardware current limiting protection enabled 0 is valid, 1 is invalid 100: Overcurrent fault of inverter unit and selection to remove the lockout 0: can be released 1: It can be released after 60 seconds of blocking 2: Keep blocking and reset power on | 101 | • | | 10-05 | Protect against
loss of flow rate | 50.0~200.0% | The model is determined | • | | 10-06 | The rate of loss of flow decreases | 0.00~50.00Hz (value per
second change) | 10.00Hz | • | | 10-07 | Input and output
phase fault
protection | Unit: Enable phase loss
protection input
Ten: output phase missing
protection enabled 0
invalid, 1 valid | 11 | 0 | | 10-08 | Underload and
overload
protection action | Unit: Overload warning selection 0: Motor overload warning 1: Inverter under overload warning Ten: Select underload, overload and dynamic actions 0: The frequency converter has an underload warning and continues to run 1: Inverter underload warning, overload and shutdown 2: The frequency converter has overload warning and continues to run, and stops after underload 3: The inverter stops after underload 100: Overload protection is possible 0: Valid for the whole journey 1: Effective at constant | 000 | 0 | | Fault
code | Product name | Description |
Factory value | Attrib
ute | |---------------|--|--|-------------------------|---------------| | 10-09 | Overload detection threshold | (10-11)~200% | The model is determined | 0 | | 10-10 | Overload detection time | 0.1~3600.0s | 1.0s | 0 | | 10-11 | Underload
detection threshold | 0~ (10-09) | 50% | 0 | | 10-12 | Time of underload
detection
Number of | 0.1~3600.0s | 1.0s | 0 | | 10-13 | automatic reset
failures | 0~10 | 0 | 0 | | 10-14 | The fault is
automatically reset
between | 0.1~3600.0s | 1.0s | 0 | | FC | Product name | Description | Factory value | Attri
bute | | 10-15 | partition
Overvoltage point
setting | 0~2500.0V | The model is determined | 0 | | 10-16 | Under-voltage point setting | 0~2000.0V | The model is determined | 0 | | 10-17 | Special function selection | Unit: voltage instability automatic frequency reduction Ten: Frequency reaches the second acceleration and deceleration time | 00 | 0 | | 10-18 | Output terminal fault action selection | 0: invalid, 1: valid
Unit: Under-voltage fault
action
Ten: Action during automatic
reset
0: valid. 1: invalid | 00 | 0 | | 10-19 | Instantaneous
power failure
and operation
options | 0: Do not continue to run
1: Keep running | 0 | 0 | | 10-20 | Instantaneous power
failure and waiting
time | 0.0~3600.0s | 1.0s | 0 | | 10-21 | Instantaneous
power failure
reduces frequency | 0: invalid, 1: valid | 0 | 0 | | 10-22 | Instantaneous power drop frequency constant | 0.00Hz~ maximum
frequency (second change
value) | 10.00Hz | 0 | | 10-23 | Speed deviation detection value | 0.0~50.0% | 10.0% | 0 | | 10-24 | Time of detection
of speed deviation | 0.0~10.0s | 0.5s | 0 | | 11 Group | Auxiliary function para | meters | | | |----------|--|--|-------------------------|---| | 11-00 | Point-to-point operation frequency | 0.00Hz~ maximum
frequency | 5.00Hz | 0 | | 11-01 | Point motion acceleration time | 0.0~3600.0s | The model is determined | 0 | | 11-02 | Jogging
deceleration time | 0.0~3600.0s | The model is determined | 0 | | 11-03 | Acceleration time 2 | 0.0~3600.0s | The model is determined | 0 | | 11-04 | Deceleration time 2 | 0.0~3600.0s | The model is determined | 0 | | 11-05 | Acceleration time 3 | 0.0~3600.0s | The model is determined | 0 | | 11-06 | Deceleration time 3 | 0.0~3600.0s | The model is determined | 0 | | 11-07 | Acceleration time 4 | 0.0~3600.0s | The model is determined | | | 11-08 | Deceleration time 4 | 0.0~3600.0s | The model is determined | | | 11-09 | Operating
frequency is lower
Lower frequency
operation mode | 0: The following frequencies
are limited
1: Shutdown
2: Hibernation | 0 | 0 | | 11-10 | Sleep recovery
delay | 0.0~3600.0s | 0.0s | 0 | | 11-11 | The frequency of sagging | 0.00~10.00Hz | 0.00Hz | 0 | | 11-12 | Fan cooling control | 0: Follow the frequency converter | 0 | 0 | | Fault
code | Product name | Description | Factory value | Attri
bute | |---------------|--|--|---------------|---------------| | | | 1: Always running | | | | 11-19 | Set the count value | (11-20)~65535 | 0 | 0 | | 11-20 | Specify the count value | 0~ (11-19) | 0 | 0 | | 11-21 | Set the running time
on a regular basis | 0~65535min | 0min | 0 | | 11-22 | Jump frequency 1 | $0.00 \sim$ maximum frequency | 0.00Hz | 0 | | 11-23 | The amplitude of the jump frequency is 1 | 0.00~ maximum frequency | 0.00Hz | 0 | | 11-24 | Jump frequency 2 | $0.00 \sim$ maximum frequency | 0.00Hz | 0 | | 11-25 | The amplitude of the jump frequency is 2 | 0.00~ maximum frequency | 0.00Hz | 0 | | 11-26 | Jump frequency 3 | $0.00 \sim$ maximum frequency | 0.00Hz | 0 | | 11-27 | The amplitude of the jump frequency is 3 | 0.00~ maximum frequency | 0.00Hz | 0 | | 11-28 | Frequency swing amplitude | 0.0~100.0% (relative to the
set frequency) | 0.0% | 0 | | 11-29 | The amplitude of
the jump frequency | 0.0~50.0% (swing frequency amplitude) | 0.0% | 0 | | 11-30 | Frequency rise time | 0.1~3600.0s | 5.0s | 0 | | 11-31 | Frequency drop
time | 0.1~3600.0s | 5.0s | 0 | | 11-32 | FDT1, frequency
check value | 0.00~ P00.03 | 50.00Hz | 0 | | 11-33 | FDT1 Frequency
detection lag
value | 0.0~100.0% | 5.0% | 0 | | 11-34 | FDT2, frequency
check value | 0.00~ maximum frequency | 50.00Hz | 0 | | 11-35 | FDT2 Frequency
detection lag
value | 0.0~100.0% | 5.0% | 0 | | 11-36 | Frequency reaches
detection value | 0.0~ maximum frequency | 0.00Hz | 0 | | | Overmodulation | Unit: Overmodulation
enabled
0: invalid, 1: valid | | | | 11-37 | selection | Ten: Overmodulation
intensity selection
0: mild, 1: deep | 01 | 0 | | 11-38 | PWM mode
selection | Unit: PWM mode selection 0: two-phase and three-phase modulation 1: Three-phase modulation Ten: Low speed carrier frequency limit selection 0: 2kHz limit 1:4kHz limit 2: No restrictions | 00 | 0 | |------------|--------------------------------------|---|--------|---| | 12 sets of | process PID parameters | | | | | 12-00 | PID, given source | 0: The number is given 1: AI1 2: AI2 3: AI3 | 0 | 0 | | | | | | | | | | 4: HDI 5: Multi-speed 6: RS-485 communication 7: Keyboard analog potentiometer | | | | 12-01 | PID is given as a
number | -100.0 ~ 100.0% | 0.0% | 0 | | 12-02 | PID, feedback
source | 0: AII 1: AI2 2: AI3 3: HDI 4: RS-485 communication 5: Keyboard analog potentiometer | 0 | 0 | | 12-03 | PID application direction | 0: positive effect
1: Reaction | 0 | 0 | | 12-04 | Proportional gain KP1 | 0.00 ~ 100.00 | 1.00 | 0 | | 12-05 | Integrate time TI1 | 0.01 ~ 10.00s | 0.10s | 0 | | 12-06 | Differentiation time
TD1 | 0.00s ~ 10.00s | 0.00s | 0 | | 12-07 | PID sampling period | 0.000~10.000s | 0.100s | 0 | | 12-08 | PID parameter
switching deviation | 0.0 ~ 100.0% | 0.0% | 0 | | 12-09 | PID output upper | (12-10) ~ 100.0% | 100.0% | 0 | | Fault
code | | | | | |---------------|--|--|--------|---| | 12-10 | PID bottoming | -100.0% ~ (12-09) | 0.0% | 0 | | 12-11 | PID command
acceleration and
deceleration time | 0.0~1000.0s | 0.0s | 0 | | 12-12 | PID output filter
time | 0.000~10.000s | 0.000s | 0 | | 12-13 | Low frequency proportional gain | 0.00~100.00 | 1.00 | 0 | | 12-14 | PID feedback loss
detection value | 0.0% (not detected) ~ 100.0% | 0.0% | 0 | | 12-15 | PID feedback loss
detection time | $0.0s \; (not \; detected) \; {\sim} 3600.0s$ | 1.0s | 0 | | 12-16 | PID regulating
function | the unit: 0: Continue integral regulation when the frequency reaches the upper and lower limits 1: Frequency reaches the upper and lower limits and stops Ten-digit adjustment of credits: 0: in the same direction as the set direction 1: in the opposite direction to the set direction Hundred: 0: Refer to the maximum frequency limit. 1: Refer to the frequency source A limit | 0001 | 0 | | | | kilobit: O: A+B, the frequency source A is added and decelerated. The time is invalid I: A+B, the frequency source A is determined by addition and subtraction, and the speed time 4 | | | |------------|--|--|------|---| | 13 sets of | multi-speed and simple | PLC parameters | | | | 13-00 | Multi-speed 0
frequency
setting value | -100.0%~100.0% | 0.0% | 0 | | 13-01 | Multiple speed
1 frequency
setting value | -100.0%~100.0% | 0.0% | 0 | | 13-02 | Multi-speed 2
frequency
setting value | -100.0%~100.0% | 0.0% | 0 | | 13-03 | Multi-speed 3
frequency
setting value | -100.0%~100.0% | 0.0% | 0 | | 13-04 | Multi-speed 4
frequency
setting value | -100.0%~100.0% | 0.0% | 0 | | 13-05 | Multi-speed 5
frequency
setting value | -100.0%~100.0% | 0.0% | 0 | | 13-06 | Multi-speed
with 6
frequency
settings | -100.0%~100.0% | 0.0% | 0 | | 13-07 | Multi-speed
with 7
frequency
settings | -100.0%~100.0% | 0.0% | 0 | | 13-08 | Multi-speed 8
frequency
setting value | -100.0%~100.0% | 0.0% | 0 | | 13-09 | Multi-speed 9
frequency
setting value | -100.0%~100.0% | 0.0% | 0 | | 13-10 | Multi-speed 10
frequency setting
value | -100.0%~100.0% | 0.0% | 0 | | 13-11 | Multi-speed 11
frequency setting
value | -100.0%~100.0% | 0.0% | 0 | | 13-12 | Multi-speed 12
frequency setting
value | -100.0%~100.0% | 0.0% | 0 | |-------|--|---------------------|---------------|---------------| | 13-13 | Multi-speed 13
frequency setting | -100.0%~100.0% | 0.0% | 0 | | 13-14 | Multi-speed 14
frequency setting | -100.0%~100.0% | 0.0% | 0 | | 13-15 | Multi-speed 15
frequency setting
value | -100.0%~100.0% | 0.0% | 0 | | FC | Product name | Description | Factory value | Attri
bute | | 13-16 | PLC run time for the
0th section | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-17 |
PLC section 1
running time | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-18 | PLC second stage
running time | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-19 | PLC third stage
running time | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-20 | PLC operates for the
fourth period | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-21 | PLC operates for 5
seconds | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-22 | PLC section 6
running time | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-23 | PLC section 7
running time | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-24 | PLC section 8
running time | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-25 | PLC section 9
running time | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-26 | PLC is running
for 10 minutes | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-27 | PLC is running
for 11 minutes | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-28 | PLC is running
for 12 minutes | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-29 | PLC is running
for 13 minutes | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-30 | PLC is running
for 14 minutes | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | Fault
code | Product name | Description | Factory value | Attribut
e | |---------------|---|---|---------------|---------------| | 13-31 | PLC is running
for 15 minutes | 0.0 ~ 6553.5 s(min) | 0.0s(min) | 0 | | 13-32 | PLC 0~7,
add/subtract
segments, speed
and time | Value range: 0x0000~0xFFFF
0 segment: Bit0-1: two
bits are selected to select
acceleration and
deceleration time 1,2,3,4
1 stage: Bit2-3: two bits
are selected to select
acceleration and | 0000 | 0 | | | | deceleration time 1,2,3,4
2 stages: Bit4-5: two bits
are selected to select
acceleration and
deceleration time 1,2,3,4
3 stages: Bit6-7: two bits | | | | | | are selected to select
acceleration and
deceleration time 1,2,3,4
4 stages: Bit8-9: two bits | | | | | | select acceleration and
deceleration time 1,2,3,4
5 stages: Bit11-10:
Two bits are selected
to select the | | | | | | acceleration and
deceleration time
1,2,3,4
6 stages: Bit12-13: | | | | | | Two bits are selected
to select the
acceleration and
deceleration time | | | | | | 1,2,3,4 Stage 7: Bit14-15: Two bits are selected to select the acceleration and deceleration time | | | | | | 1,2,3,4 | | | | Fault
code | | | | | |---------------|---|--|------|---| | 13-33 | PLC add speed
reduction time
from 8 to 15 | Value range: 0x0000-0xFFFF 8 stages: Bit0-1: two bits are selected to select acceleration and deceleration time 1,2,3,4 9 stages: Bit2-3: two bits are selected to select acceleration and deceleration time 1,2,3,4 11. Step: Bit6-7: Two bits are selected to select acceleration and deceleration time 1,2,3,4 12 stages: Bit8-9: two bits select acceleration imp 1,2,3,4 13 stages: Bit11-10: Two bits are selected to select acceleration imp 1,2,3,4 13 stages: Bit11-10: Two bits are selected to select the acceleration imp 1,2,3,4 14 stages: Bit12-13: Two bits are selected to select the acceleration and deceleration imp 1,2,3,4 14 stages: Bit12-13: Two bits are selected to select the acceleration and deceleration imp 1,2,3,4 15 stages: Bit14-15: Two bit values select the acceleration and deceleration and deceleration and deceleration and deceleration and deceleration and deceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration and deceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration and deceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration imp 1,2,3,4 15 stages: Bit14-15: Two bits values select the acceleration an | 0000 | 0 | | 13-34 | PLC running time unit | 0: seconds (s) 1: minute (min) | 0 | • | | 13-35 | PLC run mode | 0: Stop after a single run 1: The final value of the closing speed is maintained during a single run 2: It runs in a loop | 0 | • | | 13-36 | PLC power failure
memory selection | 0: Power failure does not
remember
1: Power off memory | 0 | 0 | | 13-37 | PLC shutdown
memory start
selection | 0: Restart from the first
paragraph
1: Continue to operate
at the stage frequency
from the shutdown
moment
0: 13-00 given | 0 | 0 | |-----------|---|--|------|---| | 13-38 | Multiple speed
0 frequency
given source | 1: AII 2: AI2 3: AI3 4: HDI 5: PID 6: Keyboard analog potentiometer 7: Reserve | 0 | 0 | | 14 groups | of SCI communication p | arameters | | | | | Local communication | 0 Broadcast address, 1~247 | 1 | 0 | | 14-01 | address Communication baud rate | 0: 1200BPS
1: 2400BPS
2: 4800BPS
3: 9600BPS
4: 19200BPS
5: 38400BPS
6: 57600BPS | 3 | o | | 14-02 | MODBUS data
format | O: No check (N, 8,1) for RTU 1: Even parity (E, 8, 1) for RTU 2: Odd parity (O, 8, 1) for RTU 3: No verification (N, 8,2) for RTU 4: Even parity (E, 8,2) for RTU 5: Odd parity (O, 8, 2) for RTU | 3 | 0 | | 14-03 | MODBUS
communication
response delay | 0~200ms | 5 | 0 | | 14-04 | Serial port
communication
timeout | 0.0: Invalid, 0.1~60.0s | 0.0s | 0 | | 14-05 | Communication
error action
selection | O: Alarm and free shutdown D: Do not alarm and continue to run S: Stop by pressing the stop button without alarm (only communication control mode) S: Stop by pressing the stop button without alarm (all control modes) | 0 | 0 | |-------|--|--|---|---| | 14-06 | Communication processing action selection | LED the unit: 0: Write operation has a response!: Write operation has no response | 0 | 0 | | 14-07 | Communication protocol selection | Compatible with 380 protocol (including 00 group and 30 group partial menu) Compatible with GD protocol (only communication control) | 0 | 0 | | Fault code | Product name | Description | Factory value | Attribute | |----------------------------|--|-----------------------------|---------------|-----------| | 30 sets of monit | oring parameters | | | | | 30-00 running
frequency | running
frequency | 0.01Hz | 0x7000 | 28672 | | 30-01 | Set the frequency | 0.01Hz | 0x7001 | 28673 | | 30-02 | busbar voltage | 0.1V | 0x7002 | 28674 | | 30-03 | output voltage | 1V | 0x7003 | 28675 | | 30-04 | output | 0.1A | 0x7004 | 28676 | | 30-05 | power of motor (
%) | 0.1% | 0x7005 | 28677 | | 30-06 | output torque (
%) | 0.1% |
0x7006 | 28678 | | 30-07 | Input terminal status | See group 30 for details | 0x7007 | 28679 | | 30-08 | Output terminal status | See group 30 for
details | 0x7008 | 28680 | | 30-09 | All input
voltage | 0.01V | 0x7009 | 28681 | | 30-10 | AI2 input voltage | 0.01V | 0x700A | 28682 | | 30-11 | AI3 input voltage | 0.01V | 0x700B | 28683 | | 30-12 | count value | 1 | 0x700C | 28684 | | 30-13 | Length value | 1 | 0x700D | 28685 | | 30-14 | motor speed | 1rpm | 0x700E | 28686 | | 30-15 | PID, set point | 0.1% | 0x700F | 28687 | | 30-16 | PID, feedback
value | 0.1% | 0x7010 | 28688 | | 30-17 | PLC and multi-
speed current
front section
number | 1 | 0x7011 | 28689 | | 30-18 | HDI incoming
frequency | 0.01kHz | 0x7012 | 28690 | | 30-19 | continue to have | | 0x7013 | 28691 | | 30-20 | Frequency
converter model | 1 | 0x7014 | 28692 | | 30-21 | Rated power
of the inverter | 0.1KW | 0x7015 | 28693 | | 30-22 | Rated voltage
of inverter | 1V | 0x7016 | 28694 | | 30-23 | Rated current
of inverter | 0.1A | 0x7017 | 28695 | | 30-24 | linear velocity | 1m/Min | 0x7018 | 28696 | | 30-25 | This is the running time | 1Min | 0x7019 | 28697 | | 30-26 | The slope is given frequency | 0.01Hz | 0x701A | 28698 | |-------|--------------------------------------|--------|--------|-------| | 30-27 | The torque is given in units | 0.1% | 0x701B | 28699 | | 30-28 | output torque | 0.1Nm | 0x701C | 28700 | | 30-29 | Digital
adjustment | 0.01Hz | 0x701D | 28701 | | 30-30 | torque current | 0.1A | 0x701E | 28702 | | 30-31 | exciting current | 0.1A | 0x701F | 28703 | | 30-32 | Motor power factor | 0.01 | 0x7020 | 28704 | | 30-33 | Estimate the
motor frequency | 0.01Hz | 0x7021 | 28705 | | 30-34 | Transfer
incoming line
current | 0.1A | 0x7022 | 28706 | | 30-35 | Motor
overload
count value | 1 | 0x7023 | 28707 | | | | | | | ## Chapter seven Fault diagnosis ## 7.1 Fault Description The CY1800 inverter features dozens of warning messages and protection functions. When a fault occurs, the protection function activates, causing the inverter to immediately stop output. The fault relay contacts will also activate, and the inverter panel will display the fault code "Err" followed by the fault code number. Before seeking service, users can first follow the instructions in this section to perform a self-check and analyze the cause of the fault. If the issue cannot be resolved, please contact your product agent or our company. 7.2 Fault information | Fault code | Product
name of fault | Cause of failure
troubleshooting | Fault handling countermeasures | |--------------|---------------------------|---|--| | | | Short circuit of the inverter output circuit | Excluding peripheral faults | | Err01 (Out) | | The wiring of the motor
and frequency converter | 2. Install reactor or output filter | | | Inverter unit protection | is too long 3. Module overheating | Check the air duct and fan and eliminate existing problems | | | | Loose internal wiring of
the frequency converter Abnormal main control | Plug in all the connecting wires | | | | board | 5. Seek technical support | | | | | 6. Seek technical support | | | | | 7. Seek technical support | | | | | Check the motor wire
or motor to ensure that it
is normal | | Err02 (OC1) | Accelerate | | | | Err03 (OC2) | Slow down the overcurrent | There is a ground or short circuit in the output circuit of the frequency converter The control mode is vector and no parameter identification is carried out 3. The deceleration time is too short 4. Low voltage Load is suddenly added | Excluding peripheral faults Identify motor parameters Increase the deceleration time Adjust the voltage to the normal range Cancel sudden load increase Install brake unit and | | | | 40 | | | Err04 | (OC3) | Constant speed overcurrent | 1. There is a ground or short circuit in the output circuit of the frequency converter 2. The control mode is vector and no parameter identification is carried out 3. Low voltage 4. Whether there is sudden load increase during operation 5. The frequency converter is selected too small | Excluding peripheral faults Identify motor parameters Adjust the voltage to the normal range Cancel sudden load increase choose a higher power level of frequency converter | |-------|-------|----------------------------|---|---| | Err05 | (Ovl) | Accelerate | The input voltage is too high There is an external force dragging the motor during acceleration The acceleration time is too short No brake unit and brake resistor are installed | Adjust the voltage to the
normal range Cancel the additional power or
install brake resistor Increase the acceleration
time A. Install brake unit and
resistor | | Err06 | (Ov2) | Slow down
overvoltage | The input voltage is too high There is an external force dragging the motor during the deceleration process The deceleration time is too short No brake unit and brake resistor are installed | Adjust the voltage to the
normal range Cancel the additional power or
install brake resistor Increase the deceleration
time Install brake unit and
resistor | | Err07 | (Ov3) | Constant speed overvoltage | The input voltage is too high There is external force dragging the motor during operation | Adjust the voltage to the
normal range Cancel the additional power or
install brake resistor | | Fault
code | Product name of
the fault | Cause of failure
troubleshooting | Fault handling countermeasures | |----------------------|--------------------------------|--|---| | Еп 09
(Uv) | Busbar under
voltage | Instantaneous power failure The input voltage of the frequency converter is not within the range required by the specification Abnormal bus voltage The rectifier bridge and buffer resistor are abnormal Abnormal driver board Abnormal control board | Reset fault Adjust the voltage to the normal range Seek technical support | | Err10
(oL2) | Frequency
converter overloa | Whether the load is too large
or the motor is blocked
d2. The frequency converter is
selected too small | Reduce the load and check the motor and machinery Select a frequency converter with a higher power level | | Errll
(oL1) | Motor overload | Whether the motor protection parameter setting is appropriate Whether the load is too large or the motor is blocked The motor is too small | Set this parameter correctly Reduce the load and check the motor and machinery Select a motor with a higher power rating | | Err12
(SPI) | Enter a missing phase | The three-phase input power supply is abnormal Abnormal driver board Abnormal lightning protection plate Abnormal main control board | Check and climinate problems in peripheral lines Seck technical support Seck technical support Seck technical support Seck technical support | | Err13
(Spo) | Output is out of phase | The lead from the frequency converter to the motor is abnormal The three-phase output of the frequency converter is unbalanced when the motor is running Abnormal driver board Module exception | Excluding peripheral faults Check whether the motor winding is normal and troubleshoot Seek technical support Seek technical support | | Err14
(oH2) | IGBT superheat | The ambient temperature is too high Air duct blockage Fan damage The module thermistor is damaged Inverter module is damaged Inverter module is damaged | temperature 2. Clean the air duct 3. Replace the fan s4. Replace the thermistor 5. Replace the inverter | | Fault
code | Product name of
the fault | Cause of failure
troubleshooting | Fault handling countermeasures | |----------------|--|---|---| | Err15
(EF) | External fault | The Xi terminal inputs external fault signals | Check external wiring and clear faulty operation | | Errl6
(CE) | 485
Communication
failure | The upper computer does not work properly The communication line is not normal The communication parameter group is not set correctly | Check the wiring of the upper computer Check the communication connection line Set communication parameters correctly | | Err18
(ItE) | Current detection
fault | Check for abnormalities in
the Hall device Abnormal driver board Abnormal main control
board | Replace the Hall device Replace
the driver board Seek technical support | | Err19
(tE) | Motor tuning fault | Motor parameters are not set according to the Product nameplate The parameter identification process is timeout | Set the motor parameters correctly according to the Product nameplate Check the frequency converter to the motor lead | | Err21
(EEP) | EEPROM
read/write
failure | EEPROM is operated too
frequently EEPROM chip damage | The upper computer operates
the EEPROM reasonably Replace the main control
board | | Err23
(ETH | Ground short
circuit fault | The motor is short circuit to
the ground
Motor wiring UVW
grounding is damaged.
Inverter module is
damaged | Replace the motor Replace the motor wire or troubleshoot short circuit fault Replace the module or drive board | | Err26
(End) | Cumulative
running time has
been reached | The cumulative running time reaches the set value | Reset the running time | | Err30
(LL) | Underload fault | The running current of the frequency converter is less than the set parameter | Confirm whether the load is off Whether the parameter setting is in line with the actual operating conditions | | Fault
code | Product name of
the fault | Cause of failure troubleshooting | Fault handling
countermeasures | |-----------------|---|---|--| | Err31
(PIdE) | PID feedback is
disconnected | PID feedback signal is
disconnected The PID feedback loss
detection value is not set
reasonably | Check the PID feedback signal Check that the PID feedback loss setting is reasonable | | Err40
(oL4) | Fast current
limiting fault | Whether the load is too large
or the motor is blocked The frequency converter is
selected too small | Reduce the load and check the motor and machinery Select a frequency converter with a higher power level | | Err42
(dEU) | The speed
deviation is too
large | Parameter identification is not performed The speed deviation is too large and the detection parameter setting is unreasonable Overload or blockage | Identify motor parameters The detection parameters of speed deviation are reasonably re-set Check the load to ensure that the load is normal | | Err48
(oL3) | Electronic
overload fault | The inverter reports an overload fault according to the set value of the electronic overload parameter | Test the load or adjust the electronic load value reasonably | | Err51
(Sto) | Initial position
misalignment
fault | The motor parameter setting is unreasonable Parameter identification is not performed The motor wire is not connected properly | Set the motor parameters and identify the motor parameters Identify motor parameters Check the motor wiring to ensure normal operation | | Err60
(bCE) | Brake pipe
protection fault | The brake resistor is short circuit or the brake module is abnormal | Check the brake resistor or seek technical support | | P-Lu | Power under-
voltage | The inverter is underpowered The internal switching power supply or bus of the inverter detects a fault The power segment or voltage segment of the motherboard does not match the current supply | Check the power supply of
the frequency converter
Check the internal power
supply or bus circuit of the
inverter
Check if the rated voltage
matches and seek support | - 1. This product is covered by an 18-month warranty (based on the barcode information on the device). During this period, if the product malfunctions or is damaged under normal use as per the user manual, our company will provide free repair services. - 2. Non-Covered Damages (Charges Apply): - Damage caused by misuse, unauthorized repairs, or modifications. - Damage due to fire, flooding, abnormal voltage, lightning strikes, or other natural disasters and secondary damages. - Damage from dropping, impacts, or improper handling (including during transportation). - Damage resulting from incorrect operation, improper wiring, or failure to follow the user manual. - Damage caused by excessive dust, oil contamination, moisture, or harsh environmental conditions - 3. If a malfunction occurs, please accurately and completely fill out the warranty card. - 4. Any applicable repair fees will be based on the latest repair price list issued by our company. - 5. This warranty card will not be reissued under normal circumstances. Please keep it safe and intact - 6. For any issues during service, please contact your distributor or our company directly. ## Product warranty card | customer
information | Product name of organization : Office address: | telephone
: | |---------------------------|--|-----------------------------------| | | zip code : | portraiture
: | | | product model | | | on-product
information | Body code: | | | | agent : | | | fault
message | Maintenance inf | ormation: Maintenance personnel: |